请教忙总,石墨烯会引发下一波技术革命浪潮吗?
相关资料
1.WIKI百科:
http://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收2.3%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。
应用:
1.单分子气体侦测
石墨烯独特的二维结构使它在传感器领域具有光明的应用前景。巨大的表面积使它对周围的环境非常敏感。即使是一个气体分子吸附或释放都可以检测到。这检测目前可以分为直接检测和间接检测。 通过穿透式电子显微镜可以直接观测到单原子的吸附和释放过程 。通过测量霍尔效应方法可以间接检测单原子的吸附和释放过程。当一个气体分子被吸附于石墨烯表面时,吸附位置会发生电阻的局域变化。当然,这种效应也会发生于别种物质,但石墨烯具有高电导率和低噪声的优良品质,能够侦测这微小的电阻变化。
2.场效应管及其集成电路
2.1透明导电电极 石墨烯良好的电导性能和透光性能,使它在透明电导电极方面有非常好的应用前景。触摸屏、液晶显示、有机光伏电池、有机发光二极管等等,都需要良好的透明电导电极材料。特别是,石墨烯的机械强度和柔韧性都比常用材料氧化铟锡优良。由于氧化铟锡脆度较高,比较容易损毁。在溶液内的石墨烯薄膜可以沉积于大面积区域 。
通过化学气相沉积法,可以制成大面积、连续的、透明、高电导率的少层石墨烯薄膜,主要用于光伏器件的阳极,并得到高达1.71%能量转换效率;与用氧化铟锡材料制成的元件相比,大约为其能量转换效率的55.2%[61]。
2.2导热材料/热界面材料 2011年, 美国佐治亚理工学院(Georgia Institute of Technology)学者首先报道了垂直排列官能化多层石墨烯三维立体结构在热界面材料中的应用及其超高等效热导率和超低界面热阻。
2.3场发射源及其真空电子器件 早在2002年,垂直于基底表面的石墨烯纳米墙就被成功制备出来。 它被看作是非常优良场致发射电子源材料。最近关于单片石墨烯的电场致电子发射效应也见诸报道。
2.4超级电容器 由于石墨烯具有特高的表面面积对质量比例,石墨烯可以用于超级电容器的导电电极。科学家认为这种超级电容器的储存能量密度会大于现有的电容器.
2.5石墨烯生物器件 由于石墨烯的可修改化学功能、大接触面积、原子尺吋厚度、分子闸极结构等等特色,应用于细菌侦测与诊断器件,石墨烯是个很优良的选择。
2.6 抗菌物质 中国科学院上海分院的科学家发现石墨烯氧化物对于抑制大肠杆菌的生长超级有效,而且不会伤害到人体细胞。假若石墨烯氧化物对其他细菌也具有抗菌性,则可能找到一系列新的应用,像自动除去气味的鞋子,或保存食品新鲜的包装。
---------------------------------------------------------------------------------------------------------------------------
相关报道:
1.超级电容
美国科研人员制成了一种新型超级电容(DLC,double-layer capacitors),只需200微秒的时间即可完成充电,并在交流电路的测试中获得了成功。(人类每次眨眼的时间约为0.2秒—0.4秒,即20万微秒—40万微秒)。超级电容(Supercapacitors)也称双电层电容器,是一种新型储能装置,能在几秒钟内完成充电,此外还具有容量大、功率高、使用寿命长、经济环保等特点,在数码相机、掌上电脑、新能源汽车等领域都有着广泛的应用价值。
超级电容主要通过导体的表面来存储电荷,因此用于存储电荷的面积越大、分离出的电荷越密集,其电容量越大。目前超级电容大多采用多孔化活性炭结构来扩大储能面积,这种庞大的表面积再加上非常小的电荷分离距离,使其与普通电容相比储能容量更大,与电池相比能量传递速度更快。但就某些设备而言,这区区几秒的充电时间仍然显得有些长。
由美国JME公司(位于俄亥俄州谢克海茨市的一家电容公司)总裁John R Miller所带领的一个研究团队,对超级电容的结构和电极进行了新的设计,使其充电的时间缩短到了200微秒。
新的电极由美国维吉尼亚州威廉玛丽学院(College of William & Mary)的Ron Outlaw设计。整体由一组与底座垂直的石墨烯基片构成:石墨烯基片只有一个原子厚,由等离子体化学沉积而成;其基座由10纳米厚的石墨制成。Miller形象地称其为“一组 600纳米高的土豆片并排站在一起”。实验显示,与原先的多孔化活性炭结构制成的超级电容相比,新电容效率更高,能在更短的时间内完成充电。
研究小组称,这种新型超级电容不但能够取代比其大6倍的传统电容以腾出更多的空间,还能更好地平抑电路中的电压波动。此外,该电容还在一个交流整流滤波电路的测试中获得了成功,而先前由于多孔化活性炭电阻率明显大于金属,超级电容曾一度被认为不能用于交流电路。
下一步他们还将设法使石墨烯薄片更长更平行,以在最大电容量和离子流最小束缚中找到一个平衡点,使超级电容发挥出更好的性能。而随着重量和尺寸逐渐缩小,超级电容还将在航空、航天、军事等更多领域获得应用。
相关研究成果已发表在《科学》杂志上。
(本文转自电子工程世界:
http://www.eeworld.com.cn/qcdz/2010/1019/article_2713.html)
2.IBM:石墨烯无法在CPU中完全取代硅
去年年初,IBM就在《科学》杂志上发表论文宣布,他们已经用石墨烯晶体管制造出了频率高达100GHz的电路, 预示了石墨烯应用中的美好未来。
一时间大家似乎已经乐观的认为,石墨烯将在未来数年内取代硅,成为制造高性能处理器的基本材料。然而,IBM研究院纳米技 术领域专家林郁明(音)博士日前在接受Custom PC杂志采访时一针见血的指出,石墨烯无法在数字计算领域完全取代硅的地位。
石墨烯(Graphene)是石墨的一种特殊存在形式,呈二维结构,由蜂窝状的单层碳原子组成,因此又被称为单层石墨,已成流行词汇的“碳纳米管”实际上也可被视为是滚成桶状的石墨烯。石墨烯拥有独特的物理、化学和结构特性,其在集成电路领域的应用近来被业界看好。
林郁明解释称,IBM之前展示的石墨烯晶体管和CPU中使用的晶体管有着明显的区别。石墨烯晶体管不存在能隙(Energy gap),因此无法被“完全关闭”,导致只有很小的开关比(on/off ratio)。
虽然不能用于完全取代硅制造CPU,但他也表示石墨烯可以和硅互为补充,以混合电路的形式扩充计算机芯片的功能。比如,IBM之前展示的石墨烯电路就是一种RF射频芯片,此类电路不依赖于较高的开关比。
至于石墨烯的优点,林郁明表示石墨烯晶体管电路的尺寸在理论上是无限的。相较于硅基电路,石墨烯可以更方便的扩大规模。这是因为石墨烯由单层原子组成,而硅芯片在厚度降低到原子级别的时候则会明显影响质量。
另外,由于电子在石墨烯电路中的运行速度远高于硅,因此石墨烯电路可以运行在比硅电路高得多的频率上,比如100GHz甚至1THz。
----------------------------------(未完待续)---------------------------------------------------